
LightCluster – Clustering Lights to Accelerate Shadow Computation

Daniel Wiesenhütter, Andreas Klein, Alfred Nischwitz

Munich University of Applied Sciences

Introduction

Minimum-Distance-Clustering

In order to reduce the error in shadows, we perform a two pass

clustering with different metrics in each pass. In addition, the

point lights are culled against the viewing frustum. We first select

point lights as cluster centers by using the light range and a

minimum-distance metric, which is scaled by the camera

distance. This allows us to generate smaller clusters and thus,

more shadow maps, near the camera position. In the second

clustering pass, the remaining point lights are assigned to the

nearest cluster centers. Therefore, the error in shadows due to

the decreased amount of shadow maps can be reduced.

Compute Shadows

We render a cube shadow map for each cluster and interpret the

cluster as a disc-shaped area light source. The radius of the area

light source is given by the minimum distance of the cluster. We

use this radius to scale the filter window of PCSS. The visibility

factor is then stored in a texture for each cluster. This allows us to

calculate the shadows iteratively and reduces the texture memory

from a cube shadow map to a screen sized texture per cluster. In

this way, we sample the cube shadow maps only once for each

cluster and avoid additional PCSS sampling for each light source

during shading. After the shadow computation, we use the set of

visibility textures for shading. We shade the scene with each

point light source and modulate the resulting color with the

visibility value stored in the texture for the point light's cluster.

Results

References

Shadows are an important part of a visualization and give the

viewer supplemental details about the appearance of objects. In

real-time rendering, shadow mapping [Williams 1978] is a popular

approach to compute shadows. However, a shadow map must be

computed for each light and thus, the memory and the

computation time increases with the number of lights.

We present an approach, called LightCluster, to automatically

select representative light sources and accelerate the

computation of direct shadows for scenes with many lights. We

carefully select light sources as cluster centers and cluster the

remaining lights using a minimum distance metric [Wolfowitz

1957]. We represent each cluster by an area light source and use

Percentage Closer Soft Shadows [Fernando 2005] to render soft

shadows for each cluster.

In our implementation, we use omnidirectional point lights.

However, the approach can be adapted for other light types, such

as directional or spot lights.

Related Work

Real-Time Soft Shadows

Shadow Mapping [Williams 1978] is a popular method to

compute shadows in real-time rendering. The idea is to assume

point light sources and to replace the visibility test by comparing

depth values from the light's point of view and the observer's

point of view. In order to compute shadows for omnidirectional

lights, a cube shadow map can be rendered [Gerasimov 2004].

Percentage Closer Filtering (PCF) [Reeves et al. 1987] computes

filtered hard shadows by making multiple shadow comparisons

within a filter window. This idea is further extended by Fernando

[Fernando 2005] with Percentage Closer Soft Shadows (PCSS)

to realize shadows with variable sized penumbras. Instead of

using a fixed filter per pixel, the filter window is scaled according

to a penumbra size. The penumbra size can be estimated by

calculating an average blocker depth and using similar triangles.

Many-Light Methods

Clustered Visibility [Dong et al. 2009] accelerates the

computation of indirect shadows with Reflective Shadow Maps

(RSM) [Dachsbacher and Stamminger 2005]. The method uses

k-means clustering on the RSM to build clusters of VPL. They

interpret each cluster as an area light in order to accelerate the

visibility test.

The idea of [Dong et al. 2009] is closely related to our work. In

contrast to Clustered Visibility we focus our work on high

frequency shadows for direct lighting. As the lights are not

distributed by a RSM, a k-means clustering may lead to errors. A

central cluster position can result in a representative light source

that is occluded by geometry, i.e. located within walls. Our

approach uses an existing light source as a cluster center and

clusters the remaining lights with a minimum distance metric.

Results

DACHSBACHER C., STAMMINGER M. Reflective Shadow

Maps. In Conf.proc. I3D 2005, 203-231, 2005.

DONG, Z., GROSCH, T., RITSCHEL, T., KAUTZ, J., AND

SEIDEL, H.-P. 2009. Real-time indirect illumination with clustered

visibility. In Proc. of the VMV, 187 – 196.

FERNANDO, R. 2005. Percentage-closer soft shadows. In ACM

SIGGRAPH 2005 Sketches, ACM, New York, NY, USA,

SIGGRAPH ’05.

GERASIMOV P. S. Omnidirectional Shadow Mapping, GPU

Gems, Addison-Wesley, 193-203, 2004.

REEVES W. T., SALESIN D. H., COOK R. L. Rendering

antialiased shadows with depth maps. In Conf.proc. SIGGRAPH

’87, ACM, 283-291, 1987.

WILLIAMS, L. 1978. Casting curved shadows on curved

surfaces. SIGGRAPH Comput. Graph. 12, 3 (Aug.), 270–274.

WOLFOWITZ, J. 1957. The minimum distance method. Annals of

Mathematical Statistics 28, 1, 75–88.

Scenes downloaded from:

Dabrovic Sponza: http://graphics.cs.williams.edu/data

Restaurant Scene: http://idst-render.com/scenes.html

Dabrovic Sponza Scene Time (ms)

LightCluster with 26 clusters 43.1

LightCluster with 10 clusters 20.7

Reference with 80 point lights 97.8

Restaurant Scene Time (ms)

LightCluster with 9 clusters 32.9

LightCluster with 8 clusters 30.5

Reference with 14 point lights 39.3

Our Approach

The minimum-distance-cluster algorithm [Wolfowitz 1957] is a

hierarchical clustering algorithm and clusters all objects within a

user defined minimum distance. The algorithm can be realized in

a top-down strategy and proceeds as follows. First, it is assumed

that all objects are within a single cluster. The algorithm iterates

over all objects of a cluster and splits them into new clusters, if

their distance exceeds the defined minimum distance. This step

is repeated until no more clusters can be split.

(a) point light distribution (b) frustum culling of point

lights

(c) selecting clusters with a

minimum distance metric
(d) assigning lights to

nearest clusters

